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ABSTRACT

The electric field outside a steadily rotating, uniformly
magnetized sphere is determined for the general case in which
the magnetic and rotational axes, though both pessing through
the center of the sphere, may be oriented at any angle relative
to each other.. The sphere is perfectly conducting and is
surrounded by a conducting plasma of charged particles which
are constrained to move along the magnetic field lines. The
electric field generated by the rotating sphere is found to be
just that required to cause the surrounding plasma to rotate
with the sphere. When the magnetic and rotational axes are
parallel or anti-parallel, co-rotation of sphere and plasma is
caused by the ¥ x B drift. For all other orientations Fermi
acceleration plays a role in causing co-rotation. The
electric field in a reference frame rotating with the sphere
is identically zero for the symmetric (dipole) magnetic field
under consideration. Therefore, charged particles in the plasma
do not change energy in this frame, although they appear
alternately to gain and lose small amounts of energy in a non-
rotating frame. It is concluded, however, that the electric
field generated by the earth's "wobbling" magnetic axis in

the real megnetosphere, distorted by the solar wind, probably



does cause charged particles to experience net energy changes
over a number of revolutions around the earth. It thus provides
a mechanism for diffusion of plasma and of higher energy
particles through the magnetosphere. Calculations of such
effects must take into account the high conductivity of the
plasma in the magnetosphere if they are to give correct

results.



I. INTRODUCTION

The role thet the earth's rotation plays in determining
the characteristics of the electric and magnetic fields, the low
energy plasma, and the high energy trapped radiation in the
magnetosphere is essentially unknown. Certain authors, in
developing models of the magnetosphere, have included a
circulatory pattern of plasma convection driven by the earth's
rotation [ Axford and Hines, 1961; Johnson, 1960]. Plasma on
low-latitude magnetic field lines is assumed to rotate with
the earth, whereas plasma on the high-latitude lines which form
the magnetospheric tail is assumed to rotate in the opposite
direction about an axis in the tail. By mapping electric fields
inferred from high-latitude magnetic deviations outward into a
model of the magnetosphere, Taylor and Hones [1965] have shown
that & plasma circulation pattern of this nature does, indeed,
seem to be present.

Davis [1947, 1948] showed that plasma surrounding &
rotating, conducting, magnetized sphere will rotate with the
sphere if the plasma particles are constrained to move along the
magnetic lines of force. Under these conditions charge will flow

in the plasma until the electric field



i:r—; -%@x;)x-ﬁ (1)
(as seen in a nonrotating reference frame) is established in the
plasma. Here ® is the angular velocity of the sphere, -1: is
the radial position vector and B is the magnetic field vector.
The same sphere, rotating in vacuo, however, generates a
quadrupole electric field in the surrounding space [ Swann, 1920;
Davis, 1947] and this will not cause individuzl ions and
electrons to rotate with the angular speed of the sphere.

In all of the works referred to above, the magnetic and
rotational axes of the sphere are é.ssmed parallel (or anti-
parallel) and the inductive electric field associated with the
wobble of the dipole is ignored. Terletzky [1946] considered
the effect of the induction field generated by a rotating,
magnetized sphere with nonaligned rotational and magnetic axes
and concluded that in the space around the earth particles
would be energized to tens of kilovolts by the component of this
electric field parallel to the magnetic lines of force=--an effect
which would be of considerable geophysical importance. However,
Terletzky's electric field was simply the field induced by a

magnetic dipole of moment -ﬁ, rotating with angular velocity 3:
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where, ® is the radial position vector in a nonrotating frame
of reference. Terletzky ignored the electric polarization
charge generated on the earth and, equally important, the
charge generated in the conducting plasma around the earth.
One would expect that the plasma's high conductivity parallel
to the magnetic field lines essentially cancels the parallel
component of the induction field; hence the particle energiza-
tion process visualized by Terletzky probably does not exist.
However, the component of the induction field perpendicular
to the magnetic lines is not cancelled out, and may be expected
to energize or de-energize particles by its action in the direc-
tion of their magnetic gradient and line curvature drifts.
Backus [1956] studied the rotating, magnetized sphere
with arbitrarily aligned rotation and magnetic axes. Though
he included the sphere's polarization charge in his calculation,
he, too, ignored the important effect of the sphere's immersion
in a conducting plasma. He alludes to this deficiency in his
discussion, stating that "the medium outside the stars is a

good conductor so that the results of this paper cannot be




applied to the computation of the electric field outside a
rotating magnetic star.”

In the present paper we treat%the case of a steadily

T

rotating, uniformly magnetized, and perfectly conducting sphere
with arbitrarily aligned axes of rotation and magnetization.}
wThe sphere is surrounded by, and is in direct contact with, a
tenuous plasma in which the conductivity parallel to the
megnetic field lines is infinite and that perpendicular to
the magnetic lines is zero,’ The electric field in & non-
rotating frame of reference is calculated and then used to
determine the B x B drift and energy changes of the plasma
particles. As in the case with aligned (antiparallel) axes
treated by Davis [1948], we find that the charged particles
co-rotate with the sphere. Here, however, co-rotation
involves a more subtle mechanism than in the case with
aligned axes, requiring that a mirroring particle travel
faster (as viewed from the rest-frame) during the half-bounce
vhen its velocity along a magnetic line has a component in the
direction of the sphere's rotation than during the other halfe
bounce. It is found that the electric field seen in the reste

frame produces exactly the increases and decreases of kinetic

energy necessary to achieve this effect.




II. DERIVATION OF THE ELECTRIC FIELD

A Formulation of Problem and
Method of Solution

A perfectly conducting sphere of radius, a, rotates
about an axis through its center with angular velocity, ® o
The sphere is uniformly magnetized and its internal
magnetization vector '}.;. is inclined at an angle ¥ with
respect to ?n'. Let ,1; and 21 be unit vectors parallel
to ® and 'ﬁ, respectively, as shown in Figure 1. Unit
vectors ’; and 3 lie in the plane normal to the rotational
axis of the sphere but do not rotate with it. The vector _1:
specifies a fixed obsexrvation point. The éphere is immersed
in a tenuous plasma of infinite conductivity parallel to the
external magnetic field lines and of zero conductivity normal
to these lines. The anisotropic conductivity of the plasms
is equivalent to the condition that E*B = 0, where E
and -ﬁ are the external electric and magnetic fields. The
problem is to determine the .E.: field external to the sphere,
as seen by an inertially fixed observer.

A sclution for the external -E. field proceeds as

follows:




1. Determine the sphere's internal electrostatic potential
in order to establish & boundary condition on the poten-
tial at the surface of the sphere.

2. Use the constraint -ﬁB = 0 (in the nonrotating refer-
ence frame) to obtain a differential equation for the
unknown external potential .

3. Solve the resulting differential equation for ¥ subject
to the boundary condition at the sphere's surface.

B. Internal Potential

Backus [1956] has shown that the general sclution for the
potential inside a rotating, conducting magnet is (to within an

arbitrary constant)
1 -y
V=23 (u.3) (3)
where b is the linear wvelocity of an interior point which

rotates with the sphere,

K is a vector potential whoge curl gives the internal
(and, in our case, uniform) megnetization, and

¢ is the speed of light.

With
- - - - 1 -
= WxT and A = xr)
5 &
V=—]—‘3 (ax;)'(;xx;). (4)
ca

Expansion of the dotted cross products gives
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=r2,"};H'u')' (cos 7 = cos § cos @) (5)

where, from Figure 1, (r, ©, ) are the spherical polar

coordinates of an interior observation point in the direction
A

of the unit vector n, and ¥ is the angle between a

and ﬁ. By the spherical trignometric addition formula,
cos § = cos @ cos y + sin © sin ¥ cos (P -wt) . (6)

Hence,

v =...J:.3. l '};!‘T»’ r° {cosy-cose
ca

fcos @ cos ¥ + sin 0 sin y cos (P - wt.]}

2
= -E-w—;‘- sin @ { sin @ cos 7 = cos © cos (P - wt) sin
e (7
The expression above gives the interior potentiasl of the rotating

sphere. At the surface (r = a)

v ="c% gin © sin © cos y - cos @ cos (P - wt) sinyj

(8)




c. Differential Equation
for &

The constraint -ﬁg = 0 provides a differential equaticn
for the external potential &. A general solution of Maxwell's

equations for E is

lw
>l

E = - v ﬁ-

o
d

=4

where A is a vector potential for the megnetic field B.

(We shall have occasion, later, to refer to the first term on
the right hand side of this equation as the electrostatic field,
-E.}f and to the second term as the induction field, -E.I.) With the

-h -p -y
expression above for E, and with B= € x A,

BB = -(vs +3 Z2)-(oxk) =o0. (9

A rigorous solution for @ in the presence of plasma would demand
that K be treated as an unknown, since a time varying external
charge density contributes to the spatial dependence of 7&.
Condition (9) would then be solved for the two unknowns & and

2 subject to known (or assumed) boundary conditions on both

potentials at the earth's surface. The Lorentz gauge,

V A+ T

o+




_ could be used as a second relationship between the two unknowns

¥ and A. In the work reported here, however, an approximate

solution for ¥ in the presence of plasma was obtained by assuming

that A is a vector potential for a magnetic dipole, i.e.,

2 - PXT
r3
from which
A A ~ n
B = lP‘ 5—("";)“"“ . - (10)
b of

In spherical coordinates, (r, ©, @), the components of this field

are:
{cos @ cos 7 + sin © sin ¥ cos (@ - wt)]
[sin @ cos 7 - cos @ sin ¥ cos (@ - wt)]

{ein (@ - wt) sin 7] . (102)

H\N‘E 2} \N‘: "Ju'%)

Since ¥ specifies an inertially fixed observation point,

5 _ 1 . 8p _ =
il B LR
=—;[§3xﬁ)x;]

or,
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= = -3

il

-‘g- =--]=-3- [;x@x;)] (11)

cr

which is the electric field used by Terletzky [1946] in his
calculation of the energization of particles in the wobbling
dipole field of the eerth.

The corponents of this field in spherical coordinates

are:
E. = 0
Eg =t‘;‘-’-2-sin7cos(¢'“’t)
z; =§-:§sin7cos081n(¢-wt). (12)

Use of (10) and (11) in (9) and the expansion (6) leads to the

partial differential equation

2 [cos © cos 7 + sin @ sin y cos (§ - wt) ] %—3—
+ % [sin @ cos 7 - cos © sin ¥ cos (@ - wt)] %—g

'i"—s_:ftﬁ [sin ¥ sin (§ - wt)] %

+

F—u—é sin y [cos © sin 7 - sin © cos y cos (f - wt)]
er

(23)

for the external potential & in spherical coordinates.




L

D. External Potential and
FPleld

A solution of (13) for ® which satisfies the boundary

condition (8) is

P = g—: sin © [sin 6 cos ¥ - cos @ cos (@ - wt) sin 7].
(14)

The negative gradient of this potential is the electrostatic
field E® necessary to cancel the component of the induction
field -ﬁI along the magnetic lines of force. Explicitly, the

components of B in spherical coordinates are

Els. E’—e- sin © [sin @ cos ¥ - cos @ sin y cos (¢ - wt)]

cr
Eg = -% [sin 20 cos y - cos 20 sin y cos (f - wt)]
© er
E§ = - E% cos © sin y sin (¢ - wt) (15)
cr

Finally, the complete external field, 'ﬁ, in the presence of

conducting plasma is

=i

’E'='i~51+i‘.'s=-(%-2—£+vm).

From (12) and (15) the components of the complete E field

in spherical coordinates are
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(o]
It

“-"—”5 sin @ [sin © cos 7 = cos 6 cos (f - wt) sin 7]

EO = -ﬂ%’ sinOcosQ

[}
o

g

where the angle y between F and T is given by (6).

(16)
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ITI. EXTERNAL CHARGE AND CURRENT DENSITY

The external volume charge density corresponding to the

E field in (16) is given by

- B

24

!
p Txn

or p = = {[3 cos® 6 - 1] cos ¥

l\J
H

+ [3 sin @ cos @ (f - wt)] sin 7} .
(17)

The charge density varies both spatia.lly and temporally at an
inertially fixed observation point. ~The absolute value of the
maximum charge density is, for the parametersr, p, w, and 7

epplicable to the earth, approximately

-16
1‘-:—2——}53-]-'9——— statcoulonbs/ e

n

where n is the radial distance in earth radii. This requires
a difference of only ~ lO"'9/cm3 between the number densities of
lprotons and electrons in the plasma at ~ 5 R,, or only ~ 107
of the ambient particle density at this distance.

The continuity equation

o '&)

-t
+Vo-5=0
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may be used to determine the current system corresponding to the
time varying charge density in (17). Teking the partial time

derivative of (17), one finds that

U + 3 = 2z sin y sin 0 cos © sin (§ - wt) (18)
r
Bi”
where ¢ = =2,
2qc

Hence the maximum current density will be on the order of Q__s%rl_z .
T
For values of B, 0, T, and y applicable to the earth the maximum

current at 1 Re becomes

-'

~11 2
Iam ~ 1x10 pamp/m,

a current so feeble that its perturbing effect on the dipole B

field is completely negligible, as was assumed in solving for .




18

IV. PARTICIE MOTION AND EVERGY CFANGES

The electric field (16) would be seen by a stationary
observer at point fr, 9, ¢). Its effect on charged particles in
the megnetic field (i.e., on the low energy plesma particles
themselves and also on more energetic particles which mey be
present) is most eesily understood by noting that the field
of (1€) vanishes when trensformed to a reference frame rotating
with the sphere. The f£icl3d, .ﬁ} in the rotating frame is

(for w r << ¢):

= ﬁ-&-%{@x?)x.ﬁ]. . (19)

-

Using ©x = = (r w sin 9) @¢ and making use of (10a) for B,

one finds that % [@x7T) xEl

A
= {’%’ sin © [sin ¥ cos © cos (@ - wt) - cos y sin €] e,
r

+ {v%g-‘-)sinO[sinysinOcos (¢-wt)+cosycos0]} Qg
T

(20)

~ A A
where €. €y and e¢ are a set of unit vectors in the spherical

coordinate system. But the camonents of ji given by

equation (16) are just the negative of the components above
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when the expansion (6) is used for cos §. Therefore, in the

rotating frame 3} = 0, and charged particles undergo no

T x B drift or energization but appear to move just as they

normally would in a static dipole magnetic field. In the

special case when ﬁ' and ®w are antiparallel (the situation

treated by Davis [1948])sin y = 0, cos y = -1, and the electric

field (16) in the rest frame becomes:
ﬁ=-(&sin20)3r+(-2-%‘-asin0coso)€° (21)

2
r r

which is Davis®' result.

It is interesting to examine the motion of particles in
the combined electric and magnetic fields of the non-rotating
reference frame to see how co-rotation of the plasma with the
sphere is achieved. The electric drift velocity,'Vé, is:

-v = S !E x‘ﬁ! = .8 QEE x'ﬁz
E B° B

(22)




where '1\30 is & unit vector in the direction of the magnetic field.
Expression (22) states that the electric drift velocity is equal
to the component of (@ x T) which is perpendicular to B. Though
this implies co-rotation of sphere and plasma in the special
case when megnetic and rotational axes are aligned (parallel or
antiparallel), it does not, by itself, imply co-rotation in
the general case 'considered hereq

The explicit expression for VE, with equations (16) for
T and (10e) for B, is:

3 = c(Ex3B) )

E Ba
prsin® [ -2cos ¢ 8in 7 sin (@ « wt) ] o
(3cos2¢+l) ' i
+ [ sinysin (f~-wt) 1 [ sin y cos 0 cos (f - wt)

-cosrsinQ]g0

+

{3 cos® § cos® y + sin® > cos® (@ - wt) 1 €¢
(23)

This reduces to (wr sin 0) %—-indicating co-rotation=efor
y=0o0or % (i.e., when rotational and magnetic axes are
parallel or antiparallel) or for (f - wt) =0 or 7 (i.e.,

et points lying in the plane which contains the rotational



and magnetic axes). For all other orientations _
VE £ (wr sin Q) egs that is, in general the B x B arift
alone does not cause co-rotation of plasma and sphere.
Nevertheless, the plasma particles do, on the average,
rotate with the sphere; they do so because their kinetic energy
as gseen in the rest frame is slightly greater when the
@-component of their motion along the lines of force is in
the direction of the sphere's rotation than when it is in
the opposite direction. But this is simply a special instance
of Fermi acceleration wherein a particle is reflected from
regions of magnetic field moving, alternmately, in the same
and opposite directions as the particle itself.

To iliustrate this effect, we evaluated the time rate of
change in kinetic erergy W of a particle moving in the come
bined electric and magnetic fields as seen in the rest frame.

Northrup [1963] gives this rate as:

g%ze'ﬁ°ﬁ+M-§—z (24)

where U 1s the velocity of a particle's guiding center and

M 1is the particle's magnetic moment. In the present case
U

B = 0. Therefore, we are concerned only with ly

s the




component of U perpendicular to the magnetic field, and
specifically, only with that part of U | other than the

ExE drift, since the T x B drift can contribute nothing to

the energy change. We take fij L to consgist of the magnetic
gradient and line curvature drifts, which in a curl free magnetic

field may be combined to give

U = -e-;% w(2--§;)(ﬁx<713). (25)

With this expression, and using the equations already given for

B, B, and cos §, we obtain:

1 dW _ 3w sinysin@ sin (f - wt) cos ¢
W at (@ +3 cos? )

2
B 1l + cos ¢
2(2-3—)( ) +
m 1+3cos¢

B
Bm

This equation reveals several interesting features of particle
motion:

(2) The fractional change of energy per unit time has =2
limiting value, 3w sin ¥, which it may approach for
certain combinations of the other parameters. For the
earth, 3y sin y = 5 x 10"5/sec.

(b) The rate of energy change is independent of radial dis-
tance (except as this enters implicitly in other terms,
such as B/By) and is independent of the magnetic moment
of the sphere.
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(c) The rate of energy change is anti-symmetrical about the
magnetic equator (because of the cos ¥ term) and ebout
the plane containing ‘;1 and © (because of the term

sin (¢ - wt)).

(a) Only a minor part of the energy change (that associated
with the last (B/Bm) term in the curly bracket of
equation (24)) is due to M %—g, the remainder results
from e -E' . ?I

The anti-symmetry ebout the magnetic equator causes a
particle to lose (gain) as much energy in going from one mirror
to the equator as it geins (loses) in going from the .equator to
its next mirror. Thus the particle kinetic energy at each mirror
is the same but the average kinetic energy is higher during the

"forward" bounces than during the "backward" bounces.
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V. CONCLUSIONS

A perfectly conducting, uniformly magnetized sphere
rotating in a tenuous, conducting plasma causes the plasma to
rotate with it, regardless of the relative orientation of the
sphere's magnetic and rotational axes. If the axes are parallel
or anti-parallel, co-rotation is achieved wholly through the
E x B drift resulting from the E field generated in the rest
frame by the rotating sphere. If the axes are not parallel or
anti-parallel, co-rotation is achieved through the combined
effects of ¥ x B drift and Fermi acceleration. In either case
the electric field in a reference frame rotating with the sphere
is identically zero.

We conclude from our results that plasma surrounding a
rotating magnetized body will rotate with the body as shown
here, regardless of whether the magnetic field of the body is
symmetrical (as in the present case of the uniformly magnetized
sphere) or not, so long as the requirements on conductivity are
the same as those used here, and so long as the rotating body,
itself, is the sole significant magnetic source, for then é;%
vanishes in the rotating frame. In a distorted magnetic field

such as that in the earth's magnetosphere, however, where

there are (non-corotating) magnetic sources in addition to the
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earth itself, there can be no preferred reference frame in
which the electric field is identically zero. For even in an

irregularly-moving frame which "moves with the magnetic field

23
a2t

in any reference frame will accumulate or lose energy over many

lines", there is a and one expects that particles observed
bounces. If the earth's magnetic and rotational axes were
aligned and fixed in space in such a mamner (i.e., perpendicular
to the ecliptic plane) as to provide a magnetosphere with a
non-time-varying structure, one could further anticipate that
particle energy gains and losses would be anti-symmetrical
about the noon-midnight plane [Hones, 1963]. However, in the
actual case of a time-varying distortion of the field, it is not
obvious that there will be any such anti-symmetry; therefore
the electric field generated by the earth's rotation may cause
a cumulative change in particle energy and position over many
revolutions around the earth, providing a mechanism for diffusion
of plasma and of higher energy particles through the magnetosphere.
It is probably very important, when studying the effects
of the time-varying configuration of the magnetic field in the
magnetosphere to take account of the plasma's tendency to cancel
the parallel component of the electric field, as we have done
in this paper, since so little charge separation is required

to accomplish this (see Section III). The nature of the
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electric field is completely altered by this effect, and it is
likely that conclusions reached regarding particle motions
from a model in which conductivity of the plasma is neglected

(such as Terletzky's) will be quite misleading.
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Figure Caption

Figure 1. Coordinates used in derivation of electric field

around rotating, conducting megnetized sphere.




G65-143

Figure 1




